Full Trust European Hosting

BLOG about Full Trust Hosting and Its Technology - Dedicated to European Windows Hosting Customer

AngularJS Hosting Europe - HostForLIFE.eu :: Creating a Seamless Single-Page Application with Angular Routing

clock October 30, 2023 13:02 by author Peter

What exactly is Angular routing?
Angular routing is a useful feature that allows you to create single-page applications (SPAs) by allowing navigating between different views or components within your Angular application without having to reload the entire page. Angular routing, as opposed to traditional server-side navigation, which results in a new HTTP request and a whole new page for each link or action, provides a seamless and dynamic user experience within the same page. Routing is extremely important in online development, especially in the context of single-page applications (SPAs) and current web frameworks.

Navigation in a Single-Page Application (SPA)
The program runs within a single HTML page with SPAs, and routing allows users to navigate between different views or areas of the application without having to reload the entire page. This leads in a more fluid and responsive user experience.

Loading of Dynamic Content

By allowing components or views to be loaded asynchronously as needed, routing enables dynamic content loading. This is especially significant for large applications with a high number of components because it aids in improving the first page load time.
enhanced user experience

Routing adds to a more pleasant and seamless user experience. Users can move between portions of the application with smooth transitions, giving the application the appearance of a regular desktop application.

Structure of Modular Application
Routing encourages the application to have a modular structure. Each route can be linked to a different component or feature, resulting in a better ordered and maintainable codebase. Let's start with a basic blog project to learn about routing in Angular.

Step 1. Create a New Angular Project
ng new my-blog

Follow the prompts to set up your project. You can choose options like stylesheets format (CSS, SCSS, etc.) and whether you want Angular routing or not.

Step 2. Navigate to the Project Directory
cd my-blog

For Example path. D:\CSharpCorner\Project\Angular which contain Project my-blog  we need to navigate into the Folder by using cd command in Terminal.
cd D:\CSharpCorner\Project\Angular\my-blog.

Step 3.  Create Components
ng generate component home
ng generate component about
ng generate component Services
ng generate component Blog

Step 4. Set Up Routes
Open the src/app/app-routing.module.ts file, which Angular CLI generates if you choose routing during project creation. Configure your routes in this file.
import { NgModule } from '@angular/core';
import { RouterModule, Routes } from '@angular/router';

import { HomeComponent } from './home/home.component';
import { AboutComponent } from './about/about.component';
import { ServicesComponent } from './services/services.component';
import { BlogComponent } from './blog/blog.component';

const routes: Routes = [
  { path: '', component: HomeComponent },
  { path: 'about', component: AboutComponent },
  { path: 'services', component: ServicesComponent },
  { path: 'blog', component: BlogComponent },
  imports: [RouterModule.forRoot(routes)],
  exports: [RouterModule]
export class AppRoutingModule { }

Step 5. Update App Module
Open src/app/app.module.ts and make sure to import and include the AppRoutingModule.
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';
import { AppComponent } from './app.component';
import { HomeComponent } from './home/home.component';
import { AboutComponent } from './about/about.component';
import { ServicesComponent } from './services/services.component';
import { BlogComponent } from './blog/blog.component';

  declarations: [
  imports: [
  providers: [],
  bootstrap: [AppComponent]
export class AppModule { }

Step 6. Update App Component HTML

Update src/app/app.component.html to include the <router-outlet> directive.
<!-- app.component.html -->

      <li><a routerLink="/" routerLinkActive="active">Home</a></li>
      <li><a routerLink="/about" routerLinkActive="active">About</a></li>
      <li><a routerLink="/services" routerLinkActive="active">Services</a></li>
      <li><a routerLink="/blog" routerLinkActive="active">Blog</a></li>

  <!-- Your router-outlet or other content goes here -->


Step 7. Update App Component CSS

Update src/app/app.component.css file.

/* styles.scss */

/* Reset some default margin and padding for the page */
body, h1, h2, h3, p {
  margin: 0;
  padding: 0;

/* Apply a basic style to the header */
header {
  background-color: #333;
  color: white;
  padding: 10px 20px;
  display: flex;
  justify-content: space-between;
  align-items: center;

/* Style the logo */
.logo img {
  height: 40px; /* Adjust the height as needed */

/* Style the navigation menu */
nav ul {
  list-style: none;
  display: flex;

nav ul li {
  margin-right: 20px;

nav ul li a {
  text-decoration: none;
  color: white;
  font-weight: bold;
  font-size: 16px;
  transition: color 0.3s ease-in-out;

nav ul li a:hover {
  color: #ffcc00; /* Change to your desired hover color */

/* Apply some spacing for the main content */
main {
  padding: 20px;

Step 8. Serve the Application
Run the application using the following command.
ng serve -o

You should see your basic Angular app with routing in action.

Step 9. Test Navigation
Click on the "Home" and "About" links to see the content of the corresponding components being displayed without full page reloads.

Angular routing enhances user experience in SPAs by enabling seamless navigation.Routing allows for dynamic content loading, optimizing performance.A modular application structure is encouraged through the association of routes with specific components.

The provided steps demonstrate the creation of a simple blog project with Angular routing.

If you encounter any issues or have further questions, feel free to let me know, and I'll be glad to assist.

Thank you for reading, and I hope this post has helped provide you with a better understanding of  Routing in Angular.

"Keep coding, keep innovating, and keep pushing the boundaries of what's possible.

Happy Coding.

AngularJS Hosting Europe - HostForLIFE.eu :: Components of an Angular

clock October 24, 2023 07:46 by author Peter

In this article, we will look at the fundamentals of Angular components, examining their importance and the important features that make them necessary for modern web development. By the conclusion, you'll have a firm understanding of Angular's components.

Google's Angular is a popular open-source web application framework for developing dynamic web apps. The concept of components, which serve as the framework's building blocks, is central to Angular.  It's commonly used to create dynamic, single-page web apps. The component-based architecture of Angular is one of its primary characteristics.

A component is an essential component of a user interface. It is a reusable and modular structure that wraps a portion of the application's functionality and user interface. Components are in charge of establishing the structure of a UI component and managing the logic associated with that component. Each Angular component is made up of a TypeScript class and a template.

To create a new component, use the following command. Change "my-component" to whatever name you desire for your component.
ng generate component my-component

Components in Angular serve multiple functions, and their utilization is critical to the framework's architecture. Here's why components are so important in Angular development:

  • Modularity is promoted via components, which divide down the user interface into smaller, reusable, and manageable sections. Each component contains a specific portion of the user interface and its accompanying logic.
  • Components can be reused across multiple portions of the program, making code maintenance and updating easy. Reusable components help to make the development process more efficient and scalable.
  • Components improve code readability and maintainability by grouping it into logical and self-contained sections. This organizational structure facilitates developers' understanding, maintenance, and collaboration on the codebase.
  • Data Binding: Components enable sophisticated data binding techniques, enabling for smooth data and user interface synchronization. This streamlines the handling of user input and application state updates.
  • Components include lifecycle hooks, which allow developers to access various stages of a component's life. This is useful for tasks such as initialization, cleanup, and responding to changes.
  • Components adhere to the idea of separation of concerns by splitting the application logic into discrete sections. This division facilitates the management and testing of various components of the application.

An Angular component's main characteristics

1. Typescript Component Class
The component class is built in TypeScript and contains the component's logic.
It often includes attributes and methods that specify the component's behavior.
The component class's properties can be tied to the component's template, allowing for dynamic modifications.

// app.component.ts
import { Component } from '@angular/core';

  selector: 'app-root',
  templateUrl: './app.component.html',
  styleUrls: ['./app.component.css']
export class AppComponent {
  title = 'My Angular App';
  // Other properties and methods can be defined here

2. Decorator of Components
The '@Component' decorator is used to define the component's metadata. The selector, template, and styles are all part of this. The'selector' is a CSS selector that identifies a template component. It is used to incorporate the component into other templates. The 'templateUrl' indicates the location of the component's HTML template file.

The array'styleUrls' contains URLs to external style sheets that will be applied to the component.

3. HTML template

The template is an HTML file that defines the structure of the view of the component. To improve the dynamic behavior of the UI, Angular uses a specific vocabulary in templates, including data binding, directives, and other capabilities.

<!-- app.component.html -->
<h1>{{ title }}</h1>
<p>This is my Angular application.</p>

4. CSS/SCSS Styles
The styles define the component's look.
Styles can be defined directly in the '@Component' decorator's'styles' property or in external style sheets referenced via the'styleUrls' property.


/* app.component.css */
h1 {
  color: blue;

5. Integration of Modules
Components must be included in an Angular module. The module specifies which components are associated with it.
The 'declarations' array in the module metadata lists all of the module's components, directives, and pipes.


// app.module.ts
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { AppComponent } from './app.component';

  declarations: [AppComponent],
  imports: [BrowserModule],
  bootstrap: [AppComponent]
export class AppModule {}

6. Data Binding
Components can communicate with the template using data binding. There are different types of data binding in Angular, including one-way binding ( '{{ expression }} ') property binding ( '[property]="expression" '), and event binding ( '(event)="handler" ').


<!-- app.component.html -->
<p>{{ title }}</p>
<button (click)="changeTitle()">Change Title</button>
 ' ' '

 ' ' 'typescript
// app.component.ts
export class AppComponent {
  title = 'My Angular App';

  changeTitle() {
    this.title = 'New Title';

In conclusion, Angular components are essential for developing modular and maintainable apps. They are made up of a TypeScript class that has been annotated with a decorator that provides metadata such as selector, template, and styles. The structure is defined by the template, the appearance by the styles, and the logic and data are handled by the component class.

If you run into any problems or have any additional questions, please let me know and I'll be happy to help.

Thank you for reading, and I hope this post has helped you gain a better grasp of Angular Components.

"Keep coding, innovating, and pushing the limits of what's possible."

Have fun coding.

AngularJS Hosting Europe - HostForLIFE.eu :: Using ngx-webcam to Implement Webcam Image Capture in Angular

clock October 18, 2023 07:09 by author Peter

In this blog post, we'll go over how to build an Angular application that allows users to directly capture photographs from their webcams. To accomplish this, we'll use the ngx-webcam library, which includes webcam capabilities and covers the library's installation as well as the basic setup of the Angular application in the project.

Step 1: Begin by creating a new Angular project.

If you haven't previously, enter the following command in your terminal or command line to install the Angular CLI globally:
npm install -g @angular/cli

Make a new Angular project as follows:
ng new CaptureImage

Go to the project directory:
cd D:\Angular\Project\CaptureImage

Step 2: Set up the ngx-webcam Library.
npm install ngx-webcam

Step 3: Incorporate ngx-webcam into your Angular app.
Import the WebcamModule from ngx-webcam into the src/app/app.module.ts file:

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';
import { AppComponent } from './app.component';
import { ImageWebcamComponent } from './image-webcam/image-webcam.component';
import { WebcamModule } from 'ngx-webcam';

  declarations: [
  imports: [
  providers: [],
  bootstrap: [AppComponent]
export class AppModule { }

Step 4: Make a Webcam Component
Make a new component to manage webcam functionality. Run the following command in your terminal:
ng generate component image-webcam

Open src/app/image-webcam/image-webcam.component.ts and add the following logic to capture images:

import { Component } from '@angular/core';
import { Observable, Subject } from 'rxjs';
import { WebcamImage, WebcamInitError, WebcamUtil } from 'ngx-webcam';
  selector: 'app-image-webcam',
  templateUrl: './image-webcam.component.html',
  styleUrls: ['./image-webcam.component.css']
export class ImageWebcamComponent {

  private trigger: Subject<any> = new Subject();
  webcamImage: any;
  private nextWebcam: Subject<any> = new Subject();

  sysImage = '';

  ngOnInit() {}

  public getSnapshot(): void {
    this.trigger.next(void 0);

  public captureImg(webcamImage: WebcamImage): void {
    this.webcamImage = webcamImage;
    this.sysImage = webcamImage!.imageAsDataUrl;
    console.info('got webcam image', this.sysImage);

  public get invokeObservable(): Observable<any> {
    return this.trigger.asObservable();

  public get nextWebcamObservable(): Observable<any> {
    return this.nextWebcam.asObservable();

Add the following code to src/app/image-webcam/image-webcam.component.html.

<div class="container mt-5">
  <h2>Angular Webcam Capture Image from Camera</h2>

  <div class="col-md-12">
  <div class="col-md-12">
    <button class="btn btn-danger" (click)="getSnapshot()">
      Capture Image
  <div class="col-12">
    <div id="results">Your taken image manifests here...</div>

    <img [src]="webcamImage?.imageAsDataUrl" height="400px" />

Step 5: Incorporate the Webcam Component
Add the following code to src/app/app.component.html:

Step 6: Execute your Angular Application
ng ng serve -o

Your Angular application should now have webcam capabilities. This section covers the fundamentals of integrating the ngx-webcam library into an Angular project.
If you run into any problems or have any additional questions, please let me know and I'll be happy to help.
Thank you for reading, and I hope this post has given you a better knowledge of how to use ngx-webcam to capture webcam images in Angular.
"Keep coding, innovating, and pushing the limits of what's possible."

Have fun coding.

Node.js Hosting Europe - HostForLIFE.eu :: How to Choose PDF Library in Node.js?

clock October 13, 2023 09:54 by author Peter

When it comes to document sharing, Adobe's Portable Document Format (PDF) is critical for maintaining the integrity of text-rich and aesthetically pleasing data. Access to online PDF files often necessitates the use of a certain application. Many prominent digital publications now need PDF files. Many companies utilize PDF files to create expert documentation and invoices. Additionally, developers usually employ PDF document generating libraries to meet specific client requirements. The introduction of contemporary libraries has simplified the process of creating PDFs.

What exactly is Node.js?
Node.js is a cross-platform, open-source server environment that works with Windows, Linux, Unix, macOS, and other operating systems. Node.js is a JavaScript back-end runtime environment that uses the V8 JavaScript engine to execute JavaScript code outside of a web browser.

Developers can utilize JavaScript to construct server-side scripts and command-line tools with Node.js. Dynamic web page content is commonly built before a page is sent to a user's web browser by utilizing the server's ability to run JavaScript code. Node.js promotes a "JavaScript everywhere" paradigm that unifies online application development around a single programming language, as opposed to using several languages for server-side and client-side programming.

const PDFDocument = require('pdfkit');
const fs = require('fs');
const doc = new PDFDocument();
doc.text('Hello world', 100, 100)


A wrapper library for PDFKit is called pdfmake . The programming paradigm is where there is the most difference:

While pdfmake uses a declarative approach, pdfkit uses the traditional imperative technique. Because of this, concentrating on what you want to perform is simpler than spending time instructing the library on how to get a particular outcome.

But not everything that glitters is gold, and using Webpack and trying to integrate bespoke fonts may cause problems. Unfortunately, there isn't much information regarding this problem available online. If you don't use Webpack, you can still easily clone the git repository and run the script for embedded font.

var fonts = {
  Roboto: {
    normal: 'fonts/Roboto-Regular.ttf',
    bold: 'fonts/Roboto-Medium.ttf',
    italics: 'fonts/Roboto-Italic.ttf',
    bolditalics: 'fonts/Roboto-MediumItalic.ttf'

var PdfPrinter = require('pdfmake');
var printer = new PdfPrinter(fonts);
var fs = require('fs');

var docDefinition = {
  // ...

var options = {
  // ...

var pdfDoc = printer.createPdfKitDocument(docDefinition, options);


Among the PDF libraries on GitHub, jsPDF is a PDF generation library for browsers. It has the most starts, and this is not a coincidence given how reliable and well-maintained it is. Because the modules are exported in accordance with the AMD module standard, using them with nodes and browsers is simple.

For PDFKit, the offered APIs follow an imperative paradigm, making it difficult to create complicated layouts. Including typefaces The only additional step is to convert the fonts to TTF files, which is not difficult. Although jsPDF is not the simplest library to use, the extensive documentation ensures that you won't run into any specific difficulties when using it.

import { jsPDF } from "jspdf";
const doc = new jsPDF();
doc.text("Hello world!", 10, 10);


Puppeteer is a Node library that offers a high-level API to manage Chrome, as you may know, but it can also be used to as PDF generator. Because the templates must be written in HTML, jsPDF is fairly simple for web developers to use.

Puppeteer has mostly two drawbacks. You must put a backend solution in place. Puppeteer must be launched each time a PDF needs to be created, adding to the burden. It moves slowly.

It might be an excellent solution if the aforementioned drawbacks are not a major issue for you, especially if you need to construct HTML tables and other such things.

const puppeteer = require('puppeteer')

async function printPDF() {
  const browser = await puppeteer.launch({ headless: true });
  const page = await browser.newPage();
  await page.goto('www.google.com', {waitUntil: 'networkidle0'});
  const pdf = await page.pdf({ format: 'A4' });
  await browser.close();
  return pdf


While pdfmake is based on PDFKit, pdf-lib is a library for producing and editing PDFs that is entirely written in Typescript. Even though it was launched after all the other libraries, it has thousands of stars on GitHub, indicating how well-liked it is.

The APIs have a fantastic design and naturally function with both browsers and nodes.It offers many features that other libraries simply don't have, including PDF merging, splitting, and embedding;

Although it is quite powerful, pdf-lib is also very user-friendly. One of the most popular features is the ability to embed font files using Unit8Array and ArrayBuffer, which enables using fs while dealing with nodes and xhr when working in the browser.

When you compare it to other libraries, you'll be able to tell that it performs better, and you can utilize Webpack with it, of course. Additionally, this library uses an imperative approach, which makes it difficult to work with complex layouts.
import { PDFDocument } from 'pdf-lib'

// PDF Create
const pdfDoc = await PDFDocument.create()
const page = pdfDoc.addPage()
page.drawText('Hello World')
const pdfBytes = await pdfDoc.save()

IronPDF for Node.js renders PDFs from HTML strings, files, and web URLs by using the robust Chrome Engine. It is advised to assign this operation to the server side since rendering can be computationally demanding. In order to offload the computational effort and await the outcome, frontend frameworks like ReactJs and Angular can communicate with the server. The outcome can then be shown on the front end side.

Software engineers may produce, modify PDF documents, and extract PDF material with the use of the IronPDF library, which was created and maintained by Iron Software.

When it comes to
    the creation of PDF documents using HTML, URL, JavaScript, CSS, and a variety of image formats
    A signature and headers should be included.
    Add, Copy, Split, Merge, and Delete PDF Pages
    Can able to include CSS properties.
    Performance improvement Async and complete multithreading support

import {PdfDocument} from "@ironsoftware/ironpdf";

(async () => {
  const pdf = await PdfDocument.fromHtml("<h1>Hello World</h1>");
  await pdf.saveAs("Output.pdf");

About HostForLIFE.eu

HostForLIFE.eu is European Windows Hosting Provider which focuses on Windows Platform only. We deliver on-demand hosting solutions including Shared hosting, Reseller Hosting, Cloud Hosting, Dedicated Servers, and IT as a Service for companies of all sizes.

We have offered the latest Windows 2016 Hosting, ASP.NET Core 2.2.1 Hosting, ASP.NET MVC 6 Hosting and SQL 2017 Hosting.

Tag cloud

Sign in